Jump to content
Join the Unexplained Mysteries community today! It's free and setting up an account only takes a moment.
- Sign In or Create Account -

Uncertainty Principle Detectable in the Macro


Hasina

Recommended Posts

Weird Quantum Theory Works in 'Big' Things

They knew it was true, but now they've shown it: Scientists have demonstrated that the uncertainty principle, one of the most famous rules of quantum physics, operates in macroscopic objects visible to the naked eye.

The principle, described by physicist Werner Heisenberg nearly a century ago, states that the mere act of measuring the position of a particle, such as an electron, necessarily disturbs its momentum. That means the more precisely you try to measure its location, the less you know about how fast it's moving, and vice versa.

While in theory this principle operates on all objects, in practice its effects were thought to be measurable only in the tiny realm where the rules of quantum mechanics are important. In a new experiment, described in the Feb. 15 issue of the journal Science, physicists have shown that the uncertainty principle effects can be detected in a tiny drum visible to the naked eye.

Source: http://www.livescien...acro-scale.html

Edited by Hasina
Link to comment
Share on other sites

 

Are they really sure about this?

'They then set the drum between two mirrors, and shined laser light on it. Essentially, the drum is measured when photons bounce off the drum and deflect the mirrors a given amount, and increasing the number of photons boosts the measurement accuracy. But more photons cause greater and greater fluctuations that cause mirrors to shake violently, limiting the measurement accuracy. That extra shaking is the proof of the uncertainty principle in action. The setup was kept ultra-cold to prevent thermal fluctuations from drowning out this quantum effect.'

  • Like 1
Link to comment
Share on other sites

'They then set the drum between two mirrors, and shined laser light on it. Essentially, the drum is measured when photons bounce off the drum and deflect the mirrors a given amount, and increasing the number of photons boosts the measurement accuracy. But more photons cause greater and greater fluctuations that cause mirrors to shake violently, limiting the measurement accuracy. That extra shaking is the proof of the uncertainty principle in action. The setup was kept ultra-cold to prevent thermal fluctuations from drowning out this quantum effect.'

Pretty sure it was a joke.

Uncertainty.. are they really sure?

  • Like 2
Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Recently Browsing   0 members

    • No registered users viewing this page.