Jump to content




Welcome to Unexplained Mysteries! Please sign in or create an account to start posting and to access a host of extra features.


- - - - -

Most Accurate Moon Gravity Map

moon grail ebb and flow gravity nasa

  • Please log in to reply
No replies to this topic

#1    Waspie_Dwarf

Waspie_Dwarf

    Space Cadet

  • 32,757 posts
  • Joined:03 Mar 2006
  • Gender:Male
  • Location:Bexleyheath, Kent, UK

  • We are all in the gutter, but some of us are looking at the stars.

    Oscar Wilde

Posted 12 December 2012 - 09:13 PM

NASA's GRAIL Creates Most Accurate Moon Gravity Map



www.nasa.gov said:

This movie shows the variations in the lunar gravity field as measured by NASA's Gravity Recovery and Interior Laboratory (GRAIL) during the primary mapping mission from March to May 2012. Very precise microwave measurements between two spacecraft, named Ebb and Flow, were used to map gravity with high precision and high spatial resolution  › Download video  › Image gallery



This image depicting the porosity of the<br />
lunar highland crust was derived using<br />
bulk density data from NASA's GRAIL mission<br />
and independent grain density measurements<br />
from NASA's Apollo moon mission samples as<br />
well as orbital remote-sensing data.<br />
Image credit: SA/JPL-Caltech/ IPGP <br />
<a href='http://www.nasa.gov/mission_pages/grail/multimedia/pia16588.html' class='bbc_url' title='External link' rel='nofollow external'>› Full image and caption</a>
This image depicting the porosity of the
lunar highland crust was derived using
bulk density data from NASA's GRAIL mission
and independent grain density measurements
from NASA's Apollo moon mission samples as
well as orbital remote-sensing data.
Image credit: SA/JPL-Caltech/ IPGP
› Full image and caption
PASADENA, Calif. -- Twin NASA probes orbiting Earth's moon have generated the highest resolution gravity field map of any celestial body.

The new map, created by the Gravity Recovery and Interior Laboratory (GRAIL) mission, is allowing scientists to learn about the moon's internal structure and composition in unprecedented detail. Data from the two washing machine-sized spacecraft also will provide a better understanding of how Earth and other rocky planets in the solar system formed and evolved.

The gravity field map reveals an abundance of features never before seen in detail, such as tectonic structures, volcanic landforms, basin rings, crater central peaks and numerous simple, bowl-shaped craters. Data also show the moon's gravity field is unlike that of any terrestrial planet in our solar system.

These are the first scientific results from the prime phase of the mission, and they are published in three papers in the journal Science.

"What this map tells us is that more than any other celestial body we know of, the moon wears its gravity field on its sleeve," said GRAIL Principal Investigator Maria Zuber of the Massachusetts Institute of Technology in Cambridge. "When we see a notable change in the gravity field, we can sync up this change with surface topography features such as craters, rilles or mountains."

According to Zuber, the moon's gravity field preserves the record of impact bombardment that characterized all terrestrial planetary bodies and reveals evidence for fracturing of the interior extending to the deep crust and possibly the mantle. This impact record is preserved, and now precisely measured, on the moon.

This map shows the gravity field of the<br />
moon as measured by NASA's GRAIL mission.<br />
Image credit: NASA/ARC/MIT  <br />
<a href='http://www.nasa.gov/mission_pages/grail/multimedia/pia16587.html' class='bbc_url' title='External link' rel='nofollow external'>› Full image and caption</a>
This map shows the gravity field of the
moon as measured by NASA's GRAIL mission.
Image credit: NASA/ARC/MIT  
› Full image and caption
The probes revealed the bulk density of the moon's highland crust is substantially lower than generally assumed. This low-bulk crustal density agrees well with data obtained during the final Apollo lunar missions in the early 1970s, indicating that local samples returned by astronauts are indicative of global processes.

"With our new crustal bulk density determination, we find that the average thickness of the moon's crust is between 21 and 27 miles (34 and 43 kilometers), which is about 6 to 12 miles (10 to 20 kilometers) thinner than previously thought," said Mark Wieczorek, GRAIL co-investigator at the Institut de Physique du Globe de Paris. "With this crustal thickness, the bulk composition of the moon is similar to that of Earth. This supports models where the moon is derived from Earth materials that were ejected during a giant impact event early in solar system history."

The map was created by the spacecraft transmitting radio signals to define precisely the distance between them as they orbit the moon in formation. As they fly over areas of greater and lesser gravity caused by visible features, such as mountains and craters, and masses hidden beneath the lunar surface, the distance between the two spacecraft will change slightly.

"We used gradients of the gravity field in order to highlight smaller and narrower structures than could be seen in previous datasets," said Jeff Andrews-Hanna, a GRAIL guest scientist with the Colorado School of Mines in Golden. "This data revealed a population of long, linear gravity anomalies, with lengths of hundreds of kilometers, crisscrossing the surface. These linear gravity anomalies indicate the presence of dikes, or long, thin, vertical bodies of solidified magma in the subsurface. The dikes are among the oldest features on the moon, and understanding them will tell us about its early history."

While results from the primary science mission are just beginning to be released, the collection of gravity science by the lunar twins continues. GRAIL's extended mission science phase began Aug. 30 and will conclude Dec. 17. As the end of mission nears, the spacecraft will operate at lower orbital altitudes above the moon.

When launched in September 2011, the probes were named GRAIL A and B. They were renamed Ebb and Flow in January by elementary students in Bozeman, Mont., in a nationwide contest. Ebb and Flow were placed in a near-polar, near-circular orbit at an altitude of approximately 34 miles (55 kilometers) on Dec. 31, 2011, and Jan. 1, 2012, respectively.

NASA's Jet Propulsion Laboratory in Pasadena, Calif., manages the mission for NASA's Science Mission Directorate in Washington. GRAIL is part of the Discovery Program managed at NASA's Marshall Space Flight Center in Huntsville, Ala. Lockheed Martin Space Systems of Denver built the spacecraft.

To view the lunar gravity map, visit http://bit.ly/grailtour . For more information about the mission, visit: http://www.nasa.gov/grail .

JPL is a division of the California Institute of Technology in Pasadena.    


DC Agle 818-393-9011
Jet Propulsion Laboratory, Pasadena, Calif.
agle@jpl.nasa.gov

Dwayne Brown 202-358-1726
NASA Headquarters, Washington
Dwayne.c.brown@nasa.gov

Sarah McDonnell 617-253-8923
Massachusetts Institute of Technology, Cambridge
s_mcd@mit.edu

2012-385



Posted Image Source


"Space is big. Really big. You just won't believe how vastly, hugely, mind-boggingly big it is. I mean, you may think it's a long way down the street to the chemist, but that's just peanuts to space." - The Hitch-Hikers Guide to the Galaxy - Douglas Adams 1952 - 2001

Posted Image
Click on button





1 user(s) are reading this topic

0 members, 1 guests, 0 anonymous users