Jump to content
Join the Unexplained Mysteries community today! It's free and setting up an account only takes a moment.
- Sign In or Create Account -

Black Holes & Quasars


Waspie_Dwarf

Recommended Posts

displace-m87-1-1024x696.jpg

Hubble Space Telescope Images of M87. At right, a large scale image taken with the Wide-Field/Planetary Camera-2 from 1998. The zoom-in images on the left are of the central portion of M87. HST-1 is a knot in the jet from the SMBH. (NASA and the Hubble Heritage Team (STScI/AURA), J. A. Biretta, W. B. Sparks, F. D. Macchetto, E. S. Perlman)

Here is a related story.

Bizarre behavior shown by two giant black holes

Scientists puzzled by one's brightening and the other's movement

... (snip) ... "What may well be the most interesting thing about this work is the possibility that what we found is a signpost of a black hole merger, which is of interest to people looking for gravitational waves and for people modeling these systems as a demonstration that black holes really do merge," said study member Andrew Robinson, of the Rochester Institute of Technology. ...

... Merger questions

These new results also raise key questions and introduce new areas of research regarding the merging of galaxies.

In particular, said Eric Perlman, one of the study's researchers and an associate professor of physics and space sciences at Florida Tech, it is believed that our own galaxy is expected to merge with the Andromeda galaxy in approximately three billion years.

Edited by Karlis
Link to comment
Share on other sites

 
  • Replies 203
  • Created
  • Last Reply

Top Posters In This Topic

  • Waspie_Dwarf

    79

  • thefinalfrontier

    28

  • Picturesque Orion

    6

  • Admiral Danger

    5

the more i look at the above pic. the more it seems that if the black hole isnt the center of that galaxy it soon(soon in this case being billions of years) will be, looks like it is pulling the galaxy away from its center. i could be wrong sense i dont have a 3d have said galaxy. there also could be a sleeping black hole at the center of it, and as stated above the two holes are in the process of merging.

Edited by danielost
Link to comment
Share on other sites

  • 1 month later...

CID-42: A Black Hole 'Slingshot'

06.30.10

466270maincid42opticalx.jpg

Evidence for a recoiling black hole has been found using data from the Chandra X-ray Observatory, XMM-Newton, the Hubble Space Telescope (HST), and several ground-based telescopes. This black hole kickback was caused either by a slingshot effect produced in a triple black hole system, or from the effects of gravitational waves produced after two supermassive black holes merged a few million years earlier.

The discovery of this object, located in this composite image, comes from a large, multi-wavelength survey, known as the Cosmic Evolution Survey (COSMOS). This survey includes data from Chandra, HST, XMM- Newton, as well as ground-based observatories. Of the 2,600 X-ray sources found in COSMOS, only one -- named CID-42 and located in a galaxy about 3.9 billion light years away -- coincides with two very close, compact optical sources (The two sources are seen in the HST data, but they are too close for Chandra to resolve separately.) In this image, the X-ray source detected by Chandra is colored blue, while the Hubble data are seen in gold.

The galaxy's long tail suggests that a merger between galaxies has occurred relatively recently, only a few million years earlier. Data from the Very Large Telescope and the Magellan telescope give evidence that the difference in speed of the two optical sources is at least three million miles an hour.

The X-ray spectra from Chandra and XMM-Newton provide extra information about CID-42. Absorption from iron-rich gas shows that gas is moving rapidly away from us in the rest frame of the galaxy. This could be gas in the galaxy between us and one of the black holes that is falling into the black hole, or it could be gas on the far side of the black hole that is blowing away.

Taken together, these pieces of information allow for two different scenarios for what is happening in this system. In the first scenario, the researchers surmise that a triple black hole encounter was produced by a two-step process. First, a collision between two galaxies created a galaxy with a pair of black holes in a close orbit. Before these black holes could merge, another galaxy collision occurred, and another supermassive black hole spiraled toward the existing black hole pair.

The interaction among the three black holes resulted in the lightest one being ejected. In this case, the optical source in the lower left of the image is an active galactic nucleus (AGN) powered by material being pulled along by, and falling onto, the escaping supermassive black hole. The source in the upper right is an AGN containing the black hole that resulted from a merger between the two remaining black holes.

In this slingshot scenario, the high-speed X-ray absorption can be explained as a high-speed wind blowing away from the AGN in the upper right that absorbs light from the AGN in the lower left. Based on its optical spectrum, the AGN in the upper right is thought to be obscured by a torus of dust and gas. In nearly all cases a wind from such an AGN would be undetectable, but here it is illuminated by the other AGN, giving the first evidence that fast winds exist in obscured AGN.

An alternative explanation posits a merger between two supermassive black holes in the center of the galaxy. The asymmetry of the gravitational waves emitted in this process caused the merged black hole to be kicked away from the center of the galaxy. In this scenario, the ejected black hole is the point source in the lower left and a cluster of stars left behind in the center of the galaxy is in the upper right. The observed X-ray absorption would be caused by gas falling onto the recoiling black hole.

Future observations may help eliminate or further support one of these scenarios. A team of researchers led by Francesca Civano and Martin Elvis of the Harvard-Smithsonian Center for Astrophysics (CfA) will publish their work on CID-42 in the July 1st edition of The Astrophysical Journal.

The second scenario, concerning the recoil of a supermassive black hole caused by a gravitational wave kick, has recently been proposed by Peter Jonker from the Netherlands Institute for Space Research in Utrecht as a possible explanation for a source in a different galaxy. In this study, led by Peter Jonker from the Netherlands Institute for Space Research in Utrecht, a Chandra X-ray source was discovered about ten thousand light years, in projection, away from the center of a galaxy. Three possible explanations for this object are that it is an unusual type of supernova, or an ultraluminous X- ray source with a very bright optical counterpart or a recoiling supermassive black hole resulting from a gravitational wave kick.

Credits: X-ray: NASA/CXC/SAO/F.Civano et al. Optical: NASA/STScI

> Read more/access larger images

Source: NASA - Chandra - Multimedia

Link to comment
Share on other sites

RXTE Homes in on a Black Hole's Jets

07.01.10

For decades, X-ray astronomers have studied the complex behavior of binary systems pairing a normal star with a black hole. In these systems, gas from the normal star streams toward the black hole and forms a disk around it. Friction within the disk heats the gas to millions of degrees -- hot enough to produce X-rays. At the disk's inner edge, near the black hole, strong magnetic fields eject some of the gas into dual, oppositely directed jets that blast outward at about half the speed of light.

465811main1xtej1550art2.jpg

> View Hi-Res

XTE J1550-564 is a binary system in

which an evolved star orbits -- and donates

matter to -- a black hole estimated at 10

times the sun's mass.

Credit: ESO/L. Calçada

That's the big picture, but the details have been elusive. For example, do most of the X-rays arise from the jets? The disk? Or from a high-energy region on the threshold of the black hole?

Now, astronomers using NASA's Rossi X-ray Timing Explorer (RXTE) satellite, together with optical, infrared and radio data, find that, at times, most of the X-rays come from the jets.

"Theoretical models have suggested this possibility for several years, but this is the first time we've confirmed it through multiwavelength analysis," said David Russell, lead author of the study and a post-doctoral researcher at the University of Amsterdam.

Russell and his colleagues looked at a well-studied outburst of the black-hole binary XTE J1550-564. The system lies 17,000 light-years away in the southern constellation of Norma and contains a black hole with about 10 times the sun's mass. The usually inconspicuous binary was discovered by RXTE in 1998, when the system briefly became one of the brightest X-ray sources in the sky.

465805main2outburstgrap.jpg

> View Hi-Res

> Print Resolution

In April 2000, XTE J1550-564 erupted.

The blue line indicates the energy and

brightness of X-rays from the system

as detected by NASA's Rossi X-ray

Timing Explorer. Insets show where

the X-rays are thought to originate

in the vicinity of the black hole.

From June to September, the system's

particle jets produced most of the

X-rays.

Credit: NASA/RXTE

Between April and July 2000, the system underwent another outburst. RXTE monitored the event in X-rays, with some additional help from NASA's Chandra X-ray Observatory. Optical and infrared observations covering the outburst came from the YALO 1-meter telescope at Cerro Tololo Inter-American Observatory in Chile, while radio observations were collected by the Australia Telescope Compact Array.

Drawing on these data, Russell and his team reconstructed a detailed picture of X-ray emission during the outburst. The study appears in the July 1 edition of Monthly Notices of the Royal Astronomical Society.

"We suspect that these outbursts are tied to increases in the amount of mass falling onto the black hole," explained Russell. "Where and how the emission occurs are the only clues we have to what's going on."

As the outburst began in mid-April 2000, the system's brightest X-ray emission was dominated by higher-energy ("hard") X-rays from a region very close to the black hole.

"We think the source of these X-rays is a region of very energetic electrons that form a corona around the innermost part of the disk," Russell said. When these electrons run into photons of visible light, the collision boosts the photons to hard X-ray energies, a process known as inverse Compton scattering. The jets were present, but only minor players.

Over the next couple of weeks, the peak X-ray emission moved to lower ("softer") energies and seems to have come from the dense gas in the accretion disk. At the same time, the hot disk quenched whatever process powers the jets and shut them down.

465808main1rxtebeforela.jpg

> View Hi-Res

The Rossi X-ray Timing Explorer spacecraft

undergoes pre-launch tests in 1995.

Credit: NASA/GSFC

By late May 2000, XTE J1550-564's accretion disk was cool enough that the jets switched on again. Most of the X-rays, which were fainter but higher in energy, again came from scattering off of energetic electrons close to the black hole.

In early June, as the system faded and its peak emission gradually softened, the jets emerged as the main X-ray source. In the jet, electrons and positrons moving at a substantial fraction of light speed emit the radiation as they encounter magnetic fields, a process called synchrotron emission.

The jets require a continuous supply of particles with energies of a trillion electron volts -- billions of times the energy of visible light. "The total energy bound up in the jet is enormous, much larger than previously thought," Russell said.

As summer wore on, the jets gradually faded and their X-ray emission softened. By September, the system's brightest X-rays came from high-speed blobs of matter that the jets had hurled into space during previous eruptions.

"We're really beginning to get a handle on the 'ecology' of these extreme systems, thanks in large part to RXTE," Russell added. "We can apply what we've learned in nearby binaries like XTE J1550 to the supersized black holes and jets found at the centers of galaxies."

Launched in 1995, RXTE is still going strong. "Of currently operating NASA missions, only Hubble has been working longer," said Tod Strohmayer, the mission's project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. RXTE's unique capabilities provide insight into accreting black holes and neutron stars and allow it to detect short, faint outbursts that are easily missed by other current missions exploring the X-ray regime.

Related links:

Francis Reddy

NASA's Goddard Space Flight Center

Source: NASA - Universe

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Recently Browsing   0 members

    • No registered users viewing this page.