Jump to content
Join the Unexplained Mysteries community today! It's free and setting up an account only takes a moment.
- Sign In or Create Account -

# Report: White dwarfs is small stars

## Recommended Posts

2 hours ago, bmk1245 said:

Problem is, your peabrain can't process that information.

Please get involved with the evidence. You do it great sometimes. Where it got stuck. Based on your comments, I modified the article a little (amended).

- Two stars that have the same or similar value in the relation of mass/radius (Sun = 1),  also have the same or similar density per cm3.

From Table 1. we can see that bodies of the same value in the relation of mass/radius (Sun = 1) (White Dwarfs  , PSR J0348 + 0432, Z Andromedae, KOI-74b , WD J0651 + 2844, AG Pegasi, HD 149382, and normal hot stars AB7, AB8 „O“, HD 93250, BAT99-98, VFTS 682, HD 269810, BI 253, R136a2, AB8A, Melnick 42, HD 56925, R136c have the same or similar value the relation of mass/radius (1,8-14,9 (Sun = 1) and they are classifie in White Dwarfs and Normal hot stars with low density (hot stars 0,568 g/cm3,  0,0563 kg/m3 ..).

and

Table 7. Rotation/density

 Body Rotation Mean  density g/cm3 Mass Jupiter=1 Magnetic field G Type 25,38 day 1,408 1047 1-2 (10–100 sunspots) G2V 9,925 hours 1,326 1 4,2 (10–14 poles) planets 10,64 hours 0,687 0,299 0,2 planets (−)0,718 33 day 1,27 0,046 0,1 planets 0,6713 day 1,638 0,054 0,14 Planets 16 km/s 2,063±0,023 MSun weak A0mA1 Va 25±3 Km/s 0,0563 kg/m3 21±3              MSun / B8 Ia 3,76 second / 1-3          (mass Sun) 1014 pulsar

Table 7. Rotation/density

#### Share this post

##### Share on other sites
4 minutes ago, Weitter Duckss said:

Please get involved with the evidence. You do it great sometimes. Where it got stuck. Based on your comments, I modified the article a little (amended).

- Two stars that have the same or similar value in the relation of mass/radius (Sun = 1),  also have the same or similar density per cm3.

From Table 1. we can see that bodies of the same value in the relation of mass/radius (Sun = 1) (White Dwarfs  , PSR J0348 + 0432, Z Andromedae, KOI-74b , WD J0651 + 2844, AG Pegasi, HD 149382, and normal hot stars AB7, AB8 „O“, HD 93250, BAT99-98, VFTS 682, HD 269810, BI 253, R136a2, AB8A, Melnick 42, HD 56925, R136c have the same or similar value the relation of mass/radius (1,8-14,9 (Sun = 1) and they are classifie in White Dwarfs and Normal hot stars with low density (hot stars 0,568 g/cm3,  0,0563 kg/m3 ..).

and

Table 7. Rotation/density

 Body Rotation Mean  density g/cm3 Mass Jupiter=1 Magnetic field G Type 25,38 day 1,408 1047 1-2 (10–100 sunspots) G2V 9,925 hours 1,326 1 4,2 (10–14 poles) planets 10,64 hours 0,687 0,299 0,2 planets (−)0,718 33 day 1,27 0,046 0,1 planets 0,6713 day 1,638 0,054 0,14 Planets 16 km/s 2,063±0,023 MSun weak A0mA1 Va 25±3 Km/s 0,0563 kg/m3 21±3              MSun / B8 Ia 3,76 second / 1-3          (mass Sun) 1014 pulsar

Table 7. Rotation/density

Once again, mass/radius is meaningless in this case, density is the mass divided by the volume. Do you know what volume is?

#### Share this post

##### Share on other sites
8 hours ago, bmk1245 said:

Once again, mass/radius is meaningless in this case, density is the mass divided by the volume. Do you know what volume is?

V=4/3 ·r3π

Other than r, what parameter do you see (4/3 or π)? How many times to repeat no volume calculation without radius size.

Another factor is: they do not provide links for volume. Light eminences do not accept nor the mainstream of the link, if they do not support the hypotheses. Like this is simpler, clearer and does not point to my perceptions of the process in the Universe.

I Use the main stream of evidence to break the main stream stupid hypotheses.

If two bodies have a mass / radius ratio of 5, why is one extremely dense and the other denser than Jupiter and Saturn. It's a simple question, no pitfalls, no endless hollow stories and hypotheses (theory!)?

#### Share this post

##### Share on other sites
On 9/16/2019 at 6:32 AM, Weitter Duckss said:

V=4/3 ·r3π

Other than r, what parameter do you see (4/3 or π)? How many times to repeat no volume calculation without radius size.

Another factor is: they do not provide links for volume. Light eminences do not accept nor the mainstream of the link, if they do not support the hypotheses. Like this is simpler, clearer and does not point to my perceptions of the process in the Universe.

I Use the main stream of evidence to break the main stream stupid hypotheses.

[...]

If you do know how to calculate volume, why you are using mass/radius, and not mass/volume for density, huh? I've already spoon fed you on this issue: (MStar*1.9885*1033)/((4/3)*pi*(RStar*69634200000)3) you will get density in g/cm3.

Seriously, you have zero grasp in basic math/physics, yet you are trying yourself in cosmology. You're even worse than flat earthers in that.

On 9/16/2019 at 6:32 AM, Weitter Duckss said:

[...]

If two bodies have a mass / radius ratio of 5, why is one extremely dense and the other denser than Jupiter and Saturn. It's a simple question, no pitfalls, no endless hollow stories and hypotheses (theory!)?

Just to think **snip** about: why air is less dense than uranium?

#### Share this post

##### Share on other sites
6 hours ago, bmk1245 said:

Just to think (if you are capable of thinking) about: why air is less dense than uranium?

Try to hit the White Dwarf and confirm  Their average density is about 1,000.000 times denser than the density of the Sun“

V=0,50868            M=1,15                mass/V= 2,26075

WR 102               V=0,33113184     M=16,7                             50,433..

Sun (m=1, R=1)       2,355                          1                                0,4246..

Z Andromedae        18,2                           0,75                          18,12

A bit of a remark: the author of this article disagrees with the current estimates of the stars' mass, as he claims they are the product of old hypotheses which lacked enough evidence to support them. The author suggests that a radius be equal to a mass when discussing slowly-rotating stars and that the mass decrease up to 100% with fast-rotating stars. For example, Melnick 42, 21,1 R of Sun, its mass should be around 30 M of Sun (currently, 189 M of Sun).
That would give the option to avoid these illogicalities:

Table 1. Star, type / mass / temperature

 Star Type Mass Sun=1 Temperature °K 1. WR 2, WN4-s 16 141.000 2. O 16 33.000 3. A 19 8.525 3. B 17 25.000 4. M 17 3.490 5. Planet; dist. 330 AU 12 M Jupiter 2.750 6. Planet; dist. 740 AU 24 M Jup. 2.700 (2.800) 7. M 50 3.834

Table 1. Stars, similar mass (except No 5, 6, 7), different classes (type) and temperatures.

+ Table 3 and 5. in this article.

#### Share this post

##### Share on other sites
On 9/16/2019 at 5:12 PM, Weitter Duckss said:

Try to hit the White Dwarf and confirm  Their average density is about 1,000.000 times denser than the density of the Sun“

I...]

Finaly, you've mastered basic math...Wait, not yet? Go back to shool, then we will talk. And you can claim whatever you want - that will remain senseless rant **snip**. Period.

#### Share this post

##### Share on other sites
On 9/16/2019 at 5:50 PM, bmk1245 said:

Finaly, you've mastered basic math..

So **snip** now that you have. your requested information. again you are not satisfied. Your White Dwarfs are less dense than other stars.

2MASS J0523−1403          V 2,42636                Mjup 67,54            Rjup 1,01           M/V  27,84

EBLM J0555-57                     1,396                             85,2                       0,84                  61,03

OGLE-TR-123                          0,00517395     Msun    0,0085         RSun 0,13                 16,4285

Each time, I will add a few examples.

#### Share this post

##### Share on other sites
On 9/16/2019 at 10:04 PM, Weitter Duckss said:

So **snip** now that you have. your requested information. again you are not satisfied. Your White Dwarfs are less dense than other stars.

2MASS J0523−1403          V 2,42636                Mjup 67,54            Rjup 1,01           M/V  27,84

EBLM J0555-57                     1,396                             85,2                       0,84                  61,03

OGLE-TR-123                          0,00517395     Msun    0,0085         RSun 0,13                 16,4285

Each time, I will add a few examples.

You failed again, miserably: MJun (1.8982×1027 kg) is not the same as MSun (1.9885×1030 kg), and RJup (69,911 km) is not the same as RSun (~696,000 km)

If you calculate correctly, you will get densities:

2MASS J0523−1403 - 87 grams per cubic centimeter;

EBLM J0555-57 - 191 grams per cubic centimeter;

OGLE-TR-123 - 54 grams per cubic centimeters.

Theses densities aren't any near of 10 kg/cm3, or 100 kg/cm3, or 1000 kg/cm3.

#### Share this post

##### Share on other sites
1 hour ago, bmk1245 said:

You failed again, miserably: MJun (1.8982×1027 kg) is not the same as MSun (1.9885×1030 kg), and RJup (69,911 km) is not the same as RSun (~696,000 km)

If you calculate correctly, you will get densities:

2MASS J0523−1403 - 87 grams per cubic centimeter;

EBLM J0555-57 - 191 grams per cubic centimeter;

OGLE-TR-123 - 54 grams per cubic centimeters.

Theses densities aren't any near of 10 kg/cm3, or 100 kg/cm3, or 1000 kg/cm3.

Thank you.

 Star Volume Sun=1 Mass, Sun=1 Radius, Sun=1 Mass/volume Type of star 0,50868 1,15 0,6 2,26075 White dwarf- DA 0,148 0,67 4,514 White dwarf-DC7 18,2 0,75 0,17-0,36 18,12 White dwarf- B1eq 0,14 0,078 125,27 White dwarf- D Sun (m=1, R=1) 2,355 1 1 0,4246.. G2V 0,33113184 16,7 0,52 50,433 WR- WO2 0,20061 8,1 0,44 40,377 WR_ WO3 1,2058 28,6 0,8 23,72 WR- WO2 4,711 13 1,26 2,76 WR-WN4-s 5,924 14 1,36 2,2633 WR- WN3p-w 35,921 15 2,48 0,4176 WR-WN3-hw 4069,44 103,6 12 0,02546 WR-WN5ha 62231,76 17 29,8 0,0002732 WR-WN11h 0,0197 0,496 0,203 25,178 sdB 0,01157 0,35 0,17 30,1724 M4.0Vn 0,01157 0,13 0,17 11,236 M5V 0,0801 0,308 0,324 3,845 M5V 0,015154 0,146 0,186 9,63442 M4.5V 0,005174 0,70 0,13 135,292 K4V 0,01097 0,105 0,167 9,572 dwarf nova 0,001716795 0,025-0,065 0,08-0,1 26,212 Brown Dwarf-L8/L9 0,00517395 0,085 0,13 16,4285 Brown Dwarf-M

#### Share this post

##### Share on other sites
2 hours ago, Weitter Duckss said:

Thank you.

 Star Volume Sun=1 Mass, Sun=1 Radius, Sun=1 Mass/volume Type of star 0,50868 1,15 0,6 2,26075 White dwarf- DA 0,148 0,67 4,514 White dwarf-DC7 18,2 0,75 0,17-0,36 18,12 White dwarf- B1eq 0,14 0,078 125,27 White dwarf- D Sun (m=1, R=1) 2,355 1 1 0,4246.. G2V 0,33113184 16,7 0,52 50,433 WR- WO2 0,20061 8,1 0,44 40,377 WR_ WO3 1,2058 28,6 0,8 23,72 WR- WO2 4,711 13 1,26 2,76 WR-WN4-s 5,924 14 1,36 2,2633 WR- WN3p-w 35,921 15 2,48 0,4176 WR-WN3-hw 4069,44 103,6 12 0,02546 WR-WN5ha 62231,76 17 29,8 0,0002732 WR-WN11h 0,0197 0,496 0,203 25,178 sdB 0,01157 0,35 0,17 30,1724 M4.0Vn 0,01157 0,13 0,17 11,236 M5V 0,0801 0,308 0,324 3,845 M5V 0,015154 0,146 0,186 9,63442 M4.5V 0,005174 0,70 0,13 135,292 K4V 0,01097 0,105 0,167 9,572 dwarf nova 0,001716795 0,025-0,065 0,08-0,1 26,212 Brown Dwarf-L8/L9 0,00517395 0,085 0,13 16,4285 Brown Dwarf-M

And you are dead wrong right in the first row

Do you know what percent is?!!!! Genius, 0.6% isn't 0.6, but 0.006. With values 1.15MSun and 0.006RSun, we get density 7.5x106 g/cm3.(7.5 metric tones per cubic centimeter!).

#### Share this post

##### Share on other sites
4 hours ago, bmk1245 said:

And you are dead wrong right in the first row

Do you know what percent is?!!!! Genius, 0.6% isn't 0.6, but 0.006. With values 1.15MSun and 0.006RSun, we get density 7.5x106 g/cm3.(7.5 metric tones per cubic centimeter!).

*Density: Sun=1,408 g/cm3; Jupiter 1,326 g / cm3

 Star Volume Mass, Sun=1 Radius, Sun=1 Mass/volume Type of star 0,148 0,67 4,514 White dwarf-DC7 18,2 0,75 0,17-0,36 18,12 White dwarf- B1eq 0,14 0,078 125,27 White dwarf- D Sun (M=1, R=1) 2,355 1 1 0,4246.. G2V 0,33113184 16,7 0,52 50,433 WR- WO2 0,20061 8,1 0,44 40,377 WR_ WO3 1,2058 28,6 0,8 23,72 WR- WO2 4,711 13 1,26 2,76 WR-WN4-s 5,924 14 1,36 2,2633 WR- WN3p-w 35,921 15 2,48 0,4176 WR-WN3-hw 4069,44 103,6 12 0,02546 WR-WN5ha 62231,76 17 29,8 0,0002732 WR-WN11h 0,0197 0,496 0,203 25,178 sdB 0,01157 0,35 0,17 30,1724 M4.0Vn 0,01157 0,13 0,17 11,236 M5V 0,0801 0,308 0,324 3,845 M5V 0,015154 0,146 0,186 9,63442 M4.5V 0,01097 0,105 0,167 9,572 dwarf nova 0,001716795 0,025-0,065 0,08-0,1 26,212 Brown Dwarf-L8/L9 0,00517395 0,085 0,13 16,4285 Brown Dwarf-M

"You failed again, miserably: MJun (1.8982×1027 kg) is not the same as MSun (1.9885×1030 kg), and RJup (69,911 km) is not the same as RSun (~696,000 km)"

Inside the data check. for a few thousand stars. an error occurs. The table is the first sketch and does not affect the essence of the problem and the result.

Hang on, it you not interested. However, I will explain.

In the table (without R / B 1 and 13) we see:

- small white (hot and fast-rotating) stars may have a lower, equal or higher density than other star types.

- WR stars can be very low to high density.

- the same is true for other stars with established low mass and radius.

- The existence of high density (due to the wrong platform) stars negate Tables 2-9 (especially 7th and 8th).

- the rotation speed does not create a higher density, on the contrary it reduces it. This is especially shown by Jupiter, Saturn ..

„A bit of a remark: the author of this article disagrees with the current estimates of the stars' mass, as he claims they are the product of old hypotheses which lacked enough evidence to support them. The author suggests that a radius be equal to a mass when discussing slowly-rotating stars and that the mass decrease up to 100% with fast-rotating stars. For example, Melnick 42, 21,1 R of Sun, its mass should be around 30 M of Sun (currently, 189 M of Sun).

That would give the option to avoid these illogicalities: Table“3, 4 and 5.

#### Share this post

##### Share on other sites

Dear Author,

Greetings!

This e-mail acknowledges the submission of your paper in
‘International Journal of Physics and Astronomy’. Your paper is now
under double blind peer review process. Please note the following
points for future correspondence.

Manuscript ID: PAS-1158.
Journal: International Journal of Physics and Astronomy
Time of completion of review process: 2-3 weeks*

Please don’t hesitate to contact if you have any query.

Thanks for your interest in International Journal of Physics and Astronomy.

Sincerely,
M. Mamin Ullah
Executive Editor
International Journal of Physics and Astronomy
E-mail: editor@aripd.org

* Time of completion of review process may vary based on the
reviewers’ submission of reports.

#### Share this post

##### Share on other sites
On 9/19/2019 at 11:32 PM, Weitter Duckss said:

[...]

Inside the data check. for a few thousand stars. an error occurs. The table is the first sketch and does not affect the essence of the problem and the result.

[...]

That wasn't single blunder of yours. Another example, 70 Ophiuchi B, you put 0.13 as radius, while infact it is luminosity. And another example, volume of the sphere with radius=1 (as in your table for the Sun) isn't 2,355.

You can't manage to perform simple calculations, yet you are trying to solve the problems of cosmology.

Anyway, show me any other types of stars (excluding neutron stars and white dwarfs), which would have densities over 10000 g/cm3 (10 kg/cm3). Just one star, just one with density above 10 kg/cm3.

#### Share this post

##### Share on other sites
5 hours ago, bmk1245 said:

That wasn't single blunder of yours. Another example, 70 Ophiuchi B, you put 0.13 as radius, while infact it is luminosity. And another example, volume of the sphere with radius=1 (as in your table for the Sun) isn't 2,355.

You can't manage to perform simple calculations, yet you are trying to solve the problems of cosmology.

Anyway, show me any other types of stars (excluding neutron stars and white dwarfs), which would have densities over 10000 g/cm3 (10 kg/cm3). Just one star, just one with density above 10 kg/cm3.

This (have densities over 10000 g / cm3 (10 kg / cm3) is not proof, it is the imagination of incompetent scientists.

Always repeat, they do not have a goal: to discover the truth. Contrary to the lies and fairy tales are sold several times better than the truth.

We don't have to follow their stories without proof.

I hope you don't think the very fast rotation of these bodies is accidental?

P.S. Table 1. I removed and installed a new one. Way, which can be discussed, is not the way of truth. I am  submitted a new (almost) article to the publisher.

#### Share this post

##### Share on other sites
On 9/28/2019 at 9:09 PM, Weitter Duckss said:

This (have densities over 10000 g / cm3 (10 kg / cm3) is not proof, it is the imagination of incompetent scientists.

Always repeat, they do not have a goal: to discover the truth. Contrary to the lies and fairy tales are sold several times better than the truth.

We don't have to follow their stories without proof.

I hope you don't think the very fast rotation of these bodies is accidental?

P.S. Table 1. I removed and installed a new one. Way, which can be discussed, is not the way of truth. I am  submitted a new (almost) article to the publisher.

**snip**, how do you think radius of the star is being determined, huh?

Again, give us one example of one star with the density of over 10 kg/cm3.

Edited by Waspie_Dwarf
Personal attacks removed.

#### Share this post

##### Share on other sites
On 9/28/2019 at 9:44 PM, bmk1245 said:

**snip** how do you think radius of the star is being determined, huh?

Again, give us one example of one star with the density of over 10 kg/cm3.

**snip** no need to discuss the nonsense and fabrications.

The rotation speed value is closely related to star types, as presented in the tables 2, 3, 4 and 5. At the same time it defines the temperature level of an object, but only faintly affects its density. Density mildly decreases with the increase of the rotation speed, but magnetic field value increases strongly..

Table 7. Rotation/density

 Body Rotation Mean  density g/cm3 Mass Jupiter=1 Magnetic field G Type 25,38 day 1,408 1047 1-2 G2V 9,925 hours 1,326 1 4,2 (10–14 poles) planets 10,64 hours 0,687 0,299 0,2 planets (−)0,718 33 day 1,27 0,046 0,1 planets 0,6713 day 1,638 0,054 0,14 Planets 16 km/s 2,063±0,023 MSun weak A0mA1 Va 3,76 second / 1-3          (mass Sun) 1014 pulsar

Table 7. Rotation/density

Here I will give an additional explanation for a claim that "A small star with a high mass will have a high density, because all of its mass is getting squeezed into a small space…hence, it’s very dense. A larger star of the same mass will have a lower density due to its stuff not getting squeezed so much."[11] through the rotation of an object around its axis.

Jupiter has the fastest rotation in our system, but it doesn't affect the density of the planet – it is lower [4]   than the one of Sun, Neptune and Pluto. Saturn is particularly interesting  with its lowest density in the table 7.Pan 0,42 g/cm3, Atlas 0,46 g/cm3, Pandora 0,48 g/cm3, Prometheus 0,48±0,09 g/cm³ 67P/Ch-G  0,533 g/cm3, 0,857±0,099 g/cm3).

This states that density doesn't change with the increase of mass, temperature and the speed of rotation. The speed of rotation in our system is significant with the objects that are inside the area, rich with matter, i.e., the area, where disks of gas and asteroid belts are created. The higher the frequency of matter incoming onto an object generally means that the discussed object will have a faster rotation and higher temperature.

Fast-rotating hot stars are generally situated in those parts of the space, which is rich with matter (nebulae). „

Edited by Waspie_Dwarf
Personal attacks removed.

#### Share this post

##### Share on other sites
On 9/29/2019 at 7:27 AM, Weitter Duckss said:

**snip** no need to discuss the nonsense and fabrications.

The rotation speed value is closely related to star types, as presented in the tables 2, 3, 4 and 5. At the same time it defines the temperature level of an object, but only faintly affects its density. Density mildly decreases with the increase of the rotation speed, but magnetic field value increases strongly..

Table 7. Rotation/density

 Body Rotation Mean  density g/cm3 Mass Jupiter=1 Magnetic field G Type 25,38 day 1,408 1047 1-2 G2V 9,925 hours 1,326 1 4,2 (10–14 poles) planets 10,64 hours 0,687 0,299 0,2 planets (−)0,718 33 day 1,27 0,046 0,1 planets 0,6713 day 1,638 0,054 0,14 Planets 16 km/s 2,063±0,023 MSun weak A0mA1 Va 3,76 second / 1-3          (mass Sun) 1014 pulsar

Table 7. Rotation/density

Here I will give an additional explanation for a claim that "A small star with a high mass will have a high density, because all of its mass is getting squeezed into a small space…hence, it’s very dense. A larger star of the same mass will have a lower density due to its stuff not getting squeezed so much."[11] through the rotation of an object around its axis.

Jupiter has the fastest rotation in our system, but it doesn't affect the density of the planet – it is lower [4]   than the one of Sun, Neptune and Pluto. Saturn is particularly interesting  with its lowest density in the table 7.Pan 0,42 g/cm3, Atlas 0,46 g/cm3, Pandora 0,48 g/cm3, Prometheus 0,48±0,09 g/cm³ 67P/Ch-G  0,533 g/cm3, 0,857±0,099 g/cm3).

This states that density doesn't change with the increase of mass, temperature and the speed of rotation. The speed of rotation in our system is significant with the objects that are inside the area, rich with matter, i.e., the area, where disks of gas and asteroid belts are created. The higher the frequency of matter incoming onto an object generally means that the discussed object will have a faster rotation and higher temperature.

Fast-rotating hot stars are generally situated in those parts of the space, which is rich with matter (nebulae). „

Cut the crap, show us just one star with density above 10 kg/cm3.

#### Share this post

##### Share on other sites
10 hours ago, bmk1245 said:

Cut the crap, show us just one star with density above 10 kg/cm3.

I did not find evidence of the existence of a body with a much higher density than Earth or Venus.

Of course, there are mainstream hypotheses that are not evidence.

If you have evidence (not hypotheses), please give it, "Cut the crap."

Stars and all hot bodies have ¼ the densities of these bodies.

Still, you have to know that this presentation is within the main stream of evidence. My point of view is diametrically opposite. If you understand the whole article, part of my position will be clear to you.

 Star Volume Mass, Sun=1 Radius, Sun=1 Mass/volume Type of star Sunce (M = 1, R = 1) 2,355 1 1 0,4246 .. G2V 35.921 15 2,48 0,4176 WR-WN3-HW 4069,44 103,6 12 0,02546 WR-WN5ha 62231,76 17 29,8 0,0002732 WR-WN11h

#### Share this post

##### Share on other sites
12 hours ago, Weitter Duckss said:

I did not find evidence of the existence of a body with a much higher density than Earth or Venus.

Of course, there are mainstream hypotheses that are not evidence.

If you have evidence (not hypotheses), please give it, "Cut the crap."

Stars and all hot bodies have ¼ the densities of these bodies.

Still, you have to know that this presentation is within the main stream of evidence. My point of view is diametrically opposite. If you understand the whole article, part of my position will be clear to you.

 Star Volume Mass, Sun=1 Radius, Sun=1 Mass/volume Type of star Sunce (M = 1, R = 1) 2,355 1 1 0,4246 .. G2V 35.921 15 2,48 0,4176 WR-WN3-HW 4069,44 103,6 12 0,02546 WR-WN5ha 62231,76 17 29,8 0,0002732 WR-WN11h

Just tiny sample out of many (white dwarfs):

WD 0148+467: mass 0.612, radius 0.01237, density ~460 kg/cm3
WD 0227+050: mass 0.597, radius 0.01387, density ~320 kg/cm3
WD 0232+035: mass 0.703, radius 0.0277, density ~47 kg/cm3
WD 0310-688: mass 0.587, radius 0.01144, density ~550 kg/cm3
WD 0439+466: mass 0.506, radius 0.02858, density ~31 kg/cm3

Edited by bmk1245

#### Share this post

##### Share on other sites
4 hours ago, bmk1245 said:

Just tiny sample out of many (white dwarfs):

WD 0148+467: mass 0.612, radius 0.01237, density ~460 kg/cm3
WD 0227+050: mass 0.597, radius 0.01387, density ~320 kg/cm3
WD 0232+035: mass 0.703, radius 0.0277, density ~47 kg/cm3
WD 0310-688: mass 0.587, radius 0.01144, density ~550 kg/cm3
WD 0439+466: mass 0.506, radius 0.02858, density ~31 kg/cm3

Finally, we swim in the right waters.

Now we can check the credibility (not yours, the evidence).

The easiest check is to look at stars smaller and larger than the "WD", which are the Dwarfs themselves.

 Red Star Volume Mass, Sun=1 Radius, Sun=1 Mass/volume Type of star 0,01157 0,35 0,17 30,1724 M4.0Vn 0,01157 0,13 0,17 11,236 M5V 0,0801 0,308 0,324 3,845 M5V 0,015154 0,146 0,186 9,63442 M4.5V
 Brown Dwarf Volume Mass Jup Radius Jup Mass/volume Type of star 127,1939 57 ± 15 3,78 0,445 Brown Dwarf-M8 13,73436 8 (+7, -3), (17) 1,8 0,5825 r. planet/ Brown Dwarf 8,4346 6,5 1,53 0,771 rogue planet 2,42636 67,54 MJup 1,01 RJup 27,84 Brown Dwarf-L2.5V 1,396 85,2  Mjup (~0,081 Sun) 0,84  RJup 61,03 Brown Dwarf 0,0120576 0,035    „ 0,08    „ 29,0273 Brown Dwarf-T8 2,350 68,7      „ 1          „ 29,172 Brown Dwarf-L4 1,13051 62,1      „ 0,783  „ 54,931 Brown Dwarf-T

 Sub WD Volume Mass Sun Radius Sun Mass/volume Type of star 0,02865 0.5±0.05 0.23±0.03 17,45 7,1795 1,5 1,45 0,2089282 sdO6p 0,016153 0,528 32,687 sdOB / M V 0.48 / 0.120 0.223 / 0.158 sdBV/M 3,7 4.0 sdB 0,0197 0,496 0,203 25,178 sdB 0,07948 0,5 0,15 62,91 sdBe 0,661 0.681 0,274 0,291 sdM1 ~0,78 0,573 sd:K1Fe-1 ~0,73 0.5345 sdK2.5

Check credibility.

"Just tiny sample out of many:

WD 0148+467: mass 0.612, radius 0.01237, density ~460 kg/cm3
WD 0227+050: mass 0.597, radius 0.01387, density ~320 kg/cm3
WD 0232+035: mass 0.703, radius 0.0277, density ~47 kg/cm3
WD 0310-688: mass 0.587, radius 0.01144, density ~550 kg/cm3
WD 0439+466: mass 0.506, radius 0.02858, density ~31 kg/cm3"

We have bodies of the same (or smaller and larger) masses (all are the predicteds), the same (smaller and larger) temperatures than WD. Some are brighter than WD (abbreviation of not of Weitter Duckss), many have higher temperatures. However, "scientists" claim that some are outside the laws of physics.

Once all these bodies were, by definition, as WD. Today, only the WD has retained that deformation of definition. There is no Baba Roga there.

#### Share this post

##### Share on other sites
On 9/30/2019 at 4:40 PM, Weitter Duckss said:

Finally, we swim in the right waters.

Now we can check the credibility (not yours, the evidence).

The easiest check is to look at stars smaller and larger than the "WD", which are the Dwarfs themselves.

 Red Star Volume Mass, Sun=1 Radius, Sun=1 Mass/volume Type of star 0,01157 0,35 0,17 30,1724 M4.0Vn 0,01157 0,13 0,17 11,236 M5V 0,0801 0,308 0,324 3,845 M5V 0,015154 0,146 0,186 9,63442 M4.5V
 Brown Dwarf Volume Mass Jup Radius Jup Mass/volume Type of star 127,1939 57 ± 15 3,78 0,445 Brown Dwarf-M8 13,73436 8 (+7, -3), (17) 1,8 0,5825 r. planet/ Brown Dwarf 8,4346 6,5 1,53 0,771 rogue planet 2,42636 67,54 MJup 1,01 RJup 27,84 Brown Dwarf-L2.5V 1,396 85,2  Mjup (~0,081 Sun) 0,84  RJup 61,03 Brown Dwarf 0,0120576 0,035    „ 0,08    „ 29,0273 Brown Dwarf-T8 2,350 68,7      „ 1          „ 29,172 Brown Dwarf-L4 1,13051 62,1      „ 0,783  „ 54,931 Brown Dwarf-T

 Sub WD Volume Mass Sun Radius Sun Mass/volume Type of star 0,02865 0.5±0.05 0.23±0.03 17,45 7,1795 1,5 1,45 0,2089282 sdO6p 0,016153 0,528 32,687 sdOB / M V 0.48 / 0.120 0.223 / 0.158 sdBV/M 3,7 4.0 sdB 0,0197 0,496 0,203 25,178 sdB 0,07948 0,5 0,15 62,91 sdBe 0,661 0.681 0,274 0,291 sdM1 ~0,78 0,573 sd:K1Fe-1 ~0,73 0.5345 sdK2.5

Check credibility.

"Just tiny sample out of many:

WD 0148+467: mass 0.612, radius 0.01237, density ~460 kg/cm3
WD 0227+050: mass 0.597, radius 0.01387, density ~320 kg/cm3
WD 0232+035: mass 0.703, radius 0.0277, density ~47 kg/cm3
WD 0310-688: mass 0.587, radius 0.01144, density ~550 kg/cm3
WD 0439+466: mass 0.506, radius 0.02858, density ~31 kg/cm3"

We have bodies of the same (or smaller and larger) masses (all are the predicteds), the same (smaller and larger) temperatures than WD. Some are brighter than WD (abbreviation of not of Weitter Duckss), many have higher temperatures. However, "scientists" claim that some are outside the laws of physics.

Once all these bodies were, by definition, as WD. Today, only the WD has retained that deformation of definition. There is no Baba Roga there.

For ****\$ sake, you can't even calculate volume of the sphere with given radius, you don't know what density is, and in overall, you have zero grasp in basic physics.

Heh, lets have fun, what is the volume of the Sun? What is the mass of the Sun? What is the density of the Sun?

#### Share this post

##### Share on other sites
1 hour ago, bmk1245 said:

For ****\$ sake, you can't even calculate volume of the sphere with given radius, you don't know what density is, and in overall, you have zero grasp in basic physics.

Heh, lets have fun, what is the volume of the Sun? What is the mass of the Sun? What is the density of the Sun?

For ****\$ sake, this is now judged by the judges. If you don't know, open the Internet and read it.

Heh, lets have fun, why are WD's so special as opposed to other stars? Is the reason the Bible or the journalistic (scientific) duck?

 Mass Temper. K Type 0,63 3.838,0 red dwarf star M0V 0,67 4.620,0 red dwarf star K3V 0,661 4.759 G8 subdwarf 0,67 7.510 white dwarf  DC7 0,5 29.300,0 0,503 3,692 M0.5V 0,528 42.000,0 sdOB / M V 0.29−0.53 35.000,0 B5 VI 0,7-0,9 2.000,0 C9,5e 0.5992 3.820 BY Draconis dwarf stars 0,573 16.500 white dwarf  DA4 0,59 5.700,0 white dwarf DC8.8

Explain: How does density affect the temperature of a star?

Redshift may be wrong? Evidence debunking redshift? Red face Shift?www.everythingselectric.com

#### Share this post

##### Share on other sites
2 minutes ago, Weitter Duckss said:

For ****\$ sake, this is now judged by the judges. If you don't know, open the Internet and read it.

Heh, lets have fun, why are WD's so special as opposed to other stars? Is the reason the Bible or the journalistic (scientific) duck?

 Mass Temper. K Type 0,63 3.838,0 red dwarf star M0V 0,67 4.620,0 red dwarf star K3V 0,661 4.759 G8 subdwarf 0,67 7.510 white dwarf  DC7 0,5 29.300,0 0,503 3,692 M0.5V 0,528 42.000,0 sdOB / M V 0.29−0.53 35.000,0 B5 VI 0,7-0,9 2.000,0 C9,5e 0.5992 3.820 BY Draconis dwarf stars 0,573 16.500 white dwarf  DA4 0,59 5.700,0 white dwarf DC8.8

Explain: How does density affect the temperature of a star?

Redshift may be wrong? Evidence debunking redshift? Red face Shift?www.everythingselectric.com

I'll go with the same set

WD 0148+467: mass 0.612, radius 0.01237, density ~460 kg/cm3
WD 0227+050: mass 0.597, radius 0.01387, density ~320 kg/cm3
WD 0232+035: mass 0.703, radius 0.0277, density ~47 kg/cm3
WD 0310-688: mass 0.587, radius 0.01144, density ~550 kg/cm3
WD 0439+466: mass 0.506, radius 0.02858, density ~31 kg/cm3

What points to your bs claim:

"The claim of extreme densities and the existence of supernatural white dwarfs and other hypothetical dense objects (Their average density is about 1,000.000 times denser than the density of the Sun. A single sugar cube sized amount of white dwarf would weigh about 1 tonne. [6]) can't be reliably verified.  Hot stars can be small, medium and large. Their density is similar, according to the determined standards of mass/radius. The data of the relation mass/radius (Sun=1), 1,8 do 25,36, gives no indications of density which equals to 1,000.000 ."

#### Share this post

##### Share on other sites
3 hours ago, bmk1245 said:

I'll go with the same set

WD 0148+467: mass 0.612, radius 0.01237, density ~460 kg/cm3
WD 0227+050: mass 0.597, radius 0.01387, density ~320 kg/cm3
WD 0232+035: mass 0.703, radius 0.0277, density ~47 kg/cm3
WD 0310-688: mass 0.587, radius 0.01144, density ~550 kg/cm3
WD 0439+466: mass 0.506, radius 0.02858, density ~31 kg/cm3

What points to your bs claim:

"The claim of extreme densities and the existence of supernatural white dwarfs and other hypothetical dense objects (Their average density is about 1,000.000 times denser than the density of the Sun. A single sugar cube sized amount of white dwarf would weigh about 1 tonne. [6]) can't be reliably verified.  Hot stars can be small, medium and large. Their density is similar, according to the determined standards of mass/radius. The data of the relation mass/radius (Sun=1), 1,8 do 25,36, gives no indications of density which equals to 1,000.000 ."

I removed that from the article. I chose the second time.

The central theme is (and continues to be):

Table 7. Rotation/density

 Body Rotation Mean  density g/cm3 Mass Jupiter=1 Magnetic field G Type 25,38 day 1,408 1047 1-2 (10–100 sunspots) G2V 9,925 hours 1,326 1 4,2 (10–14 poles) planets 10,64 hours 0,687 0,299 0,2 planets (−)0,718 33 day 1,27 0,046 0,1 planets 0,6713 day 1,638 0,054 0,14 Planets 16 km/s 2,063±0,023 MSun weak A0mA1 Va 3,76 second / 1-3          (mass Sun) 1014 pulsar

Table 7. Rotation/density

The temperature depends on the rotation speed, Table 2. etc.

This is an indisputable fact (not a hypothesis).

The rotation speed, due to rising temperatures, decomposes complex elements and junctions and reduces the density of stars. Unless there are other factors, it is a basic natural process.

Now this needs to be turned into mainstream evidence (which is based on erroneous old hypotheses and theories).

We visited Pluto and found that at this distance, we did not know how to determine the exact radius. Remember that Pluto also visited Voyager. So much for evidence from bad theories.

Earth's density increases and temperature rises:

Geologic layers of Earth

 Depth[113] km Component layer Density g/cm3 0–60 Lithosphere[n 14] — 0–35 Crust[n 15] 2.2–2.9 35–60 Upper mantle 3.4–4.4 35–2890 Mantle 3.4–5.6 100–700 Asthenosphere — 2890–5100 Outer core 9.9–12.2 5100–6378 Inner core 12.8–13.1

That is the point of my past question, because the evidence, which I gave, are contrary to the basic laws as well as white dwarfs.

Table 1. The observation of the parallel indicators of mass, radius, temperature and surface gravity

 Star Volume Mass, Sun=1 Radius, Sun=1 Mass/volume Type of star 0,02865 0,5±0,05 0,23±0,03 17,45 blue-white subdwarf star 7,1795 1,5 1,45 0,2089282 sdO6p 0,016153 0,528 32,687 sdOB / M V 0,026 / 0,0093 0,48 / 0,120 0,223 / 0,158 18,46 / 12,9 sdBV/M 150,72 3,7 4,0 0,02455 sdB 0,0197 0,496 0,203 25,178 sdB 0,07948 0,5 0,15 62,91 sdBe 0,744 0,661 0,681 0,8884 0,058 0,274 0,291 4,7241 sdM1 0,4431 ~0,78 0,573 1,76 sd:K1Fe-1 0,3596 ~0,73 0,5345 2,03 sdK2.5 Sun (M=1, R=1) 2,355 1 1 0,4246.. G2V 0,33113184 16,7 0,52 50,433 WR- WO2 0,20061 8,1 0,44 40,377 WR_ WO3 1,2058 28,6 0,8 23,72 WR- WO2 4,711 13 1,26 2,76 WR-WN4-s 5,924 14 1,36 2,2633 WR- WN3p-w 35,921 15 2,48 0,4176 WR-WN3-hw 4069,44 103,6 12 0,02546 WR-WN5ha 62231,76 17 29,8 0,0002732 WR-WN11h 17.462,0 51 18-21 0,00292 O6.5If(n)p 3.898927.371,9 50 1.183,0 0,000000013 M4.5-M7.9Ia-III 0,01157 0,35 0,17 30,1724 M4.0Vn 0,01157 0,13 0,17 11,236 M5V 0,0801 0,308 0,324 3,845 M5V 0,015154 0,146 0,186 9,63442 M4.5V 0,01097 0,105 0,167 9,572 dwarf nova 0,129 0,011 0,23-0,57 0,08527 r. planet/ Brown Dwarf 0,0031345 0,09 0,11 28,7127 Red/Brown Dwarf-M9 0,001716795 0,025-0,065 0,08-0,1 26,212 Brown Dwarf-L8/L9 0,00517395 0,085 0,13 16,4285 Brown Dwarf-M Mass and radius of Jupiter (jup = 1), density: Sun=1,408 g/cm3; Jupiter 1,326 g / cm3 Star Volume Mass Jup Radius Jup Mass/volume Type of star 127,1939 57 ± 15 3,78 0,445 Brown Dwarf-M8 13,73436 8 (+7, -3), (17) 1,8 0,5825 r. planet/ Brown Dwarf 8,4346 6,5 1,53 0,771 rogue planet 2,42636 67,54 1,01 27,84 Brown Dwarf-L2.5V 1,396 85,2 (~0,081 Sun) 0,84 61,03 Brown Dwarf 0,0120576 0,035 0,08 29,0273 Brown Dwarf-T8 2,350 68,7 1 29,172 Brown Dwarf-L4 1,13051 62,1 0,783 54,931 Brown Dwarf-T Star Distance AU Mass Jup Radius Jup Temperature K Type planet Srars generate their own energy. Planet reflected radiation, do not create their own energy. 6.900,0 13,3 / 1.800,0 Planet 140 9 0,9-3 1.800,0-2.600,0 Planet 92 9 1,5 1.450,0 Planet 24 7 1,2 1.090,0 Planet 38 7 1,3 1.090,0 Planet 330 2.750,0 Planet 670 14 0,9078 2.600,0 Planet 472,9 21 0,9078 2.375,0 Planet

Table 1. Relationshift: Mass/volume, temperature and surface gravity

The analysis of the objects' density in Table 1 (in the relation of mass/volume – star type) points out that there is no consistency that would be related to star types. Inside a same star type there are densities, which are lower, higher or the same as the one of Sun. The old concept's contours are clearly visible in the statements that smaller stars have higher densities and big red stars are inflated objects. [2] However, that concept also lacks consistency. It is particularly important to point out that the mass and radius estimates of the objects that are smaller than the mass and radius of Sun are generally only hypothesized (using the old hypotheses). [3]  If a star has the same mass or radius as Sun, the estimate of its density may follow several different hypotheses. For example, if an object is classified into a type of  "planets", it is less dense than a type known as a brown dwarf. Brown Dwarfs masses are 0,035 and 68,7 (2MASS 0939−2448 and 15 Sagittae) and it makes mass/volume ratio of 29,0273 and 29,1720 respectively. At the same time, planets with the distances of  38-6.900,0 AU have mass/volume ratio around 1 (ROXs 42B b ø 0,6036; HIP 65426 b 1,7395). In a particular type of stars, Wolf–Rayet stars, there are stars with mass/volume ratio of 0,0002732 (WR 31a) to 50,4330 (WR 102). M type stars with large quantities of mass suggest their densities are low, because the effects of their slow rotation don't provide the same results with the objects they are interacted with, to the contrary of faster and fast rotating stars.  Generally, the decrease of density is ascribed to the stars with the increase of mass above 1 M Sun (Lambda Cephei   M 51 MSun, M/V 0,00292; NML Cygni M 51 MSun, M/V 0,000000013).“

#### Share this post

##### Share on other sites
17 minutes ago, Weitter Duckss said:

[...]

Again

WD 0148+467: mass 0.612, radius 0.01237, density ~460 kg/cm3
WD 0227+050: mass 0.597, radius 0.01387, density ~320 kg/cm3
WD 0232+035: mass 0.703, radius 0.0277, density ~47 kg/cm3
WD 0310-688: mass 0.587, radius 0.01144, density ~550 kg/cm3
WD 0439+466: mass 0.506, radius 0.02858, density ~31 kg/cm3

Show any main sequence star with density over 10 kg/cm3

## Create an account or sign in to comment

You need to be a member in order to leave a comment

## Create an account

Sign up for a new account in our community. It's easy!

Register a new account

## Sign in

Already have an account? Sign in here.

Sign In Now

• ### Recently Browsing   0 members

No registered users viewing this page.