Jump to content
Join the Unexplained Mysteries community today! It's free and setting up an account only takes a moment.
- Sign In or Create Account -
Sign in to follow this  
alfa015

I designed a crewed interstellar spacecraft

Recommended Posts

alfa015

Hi everybody,

I would like to share with you a crewed interstellar spacecraft which I have designed and called Solar One.

It employs a combination of 3 propulsion methods: nuclear fusion, beam-powered propulsion , and photon propulsion.

Basically, several compact fusion reactors power a laser system that propels a huge light sail.

Physicist Robert Forward already proposed in 1983 to use a 26-TW laser system to propel a 100-km light sail, a fresnel lens to focus the beam of the laser, and decelerate the spacecraft with a secondary light sail.

I propose something a bit different, which is to use to use for example a 60 TW-laser to propel a 5-km light sail that would deploy from the spacecraft after the acceleration stage, use parabolic mirrors that gradually change their orientation in order to focus the laser beam, and finally use a photon rocket to decelerate the spacecraft.

In theory, it could be possible to achieve 25% the speed of light, reaching the closest potentially habitable exoplanet in less than 20 years.

There are of course many challenges, like building high-energy continuous-wave lasers, reducing the weight of the nuclear fusion reactors (and of course achieving effective nuclear fusion first), and minimizing the effects of zero gravity during such a long trip.

What do you guys suggest to overcome these challenges?

This is my paper and a short video that summarizes all.

  • Like 1

Share this post


Link to post
Share on other sites
 
kartikg

All the best. 

Share this post


Link to post
Share on other sites
alfa015

Thanks!

Share this post


Link to post
Share on other sites
tmcom

Haven't we all.

^_^

Share this post


Link to post
Share on other sites
ThereWeAreThen
On 7/4/2020 at 1:09 PM, alfa015 said:

Hi everybody,

I would like to share with you a crewed interstellar spacecraft which I have designed and called Solar One.

It employs a combination of 3 propulsion methods: nuclear fusion, beam-powered propulsion , and photon propulsion.

Basically, several compact fusion reactors power a laser system that propels a huge light sail.

Physicist Robert Forward already proposed in 1983 to use a 26-TW laser system to propel a 100-km light sail, a fresnel lens to focus the beam of the laser, and decelerate the spacecraft with a secondary light sail.

I propose something a bit different, which is to use to use for example a 60 TW-laser to propel a 5-km light sail that would deploy from the spacecraft after the acceleration stage, use parabolic mirrors that gradually change their orientation in order to focus the laser beam, and finally use a photon rocket to decelerate the spacecraft.

In theory, it could be possible to achieve 25% the speed of light, reaching the closest potentially habitable exoplanet in less than 20 years.

There are of course many challenges, like building high-energy continuous-wave lasers, reducing the weight of the nuclear fusion reactors (and of course achieving effective nuclear fusion first), and minimizing the effects of zero gravity during such a long trip.

What do you guys suggest to overcome these challenges?

This is my paper and a short video that summarizes all.

I saw the video of yourself and John Michael Godier it was incredible. Best of luck (if it is actually you!) :D

Share this post


Link to post
Share on other sites
Abramelin

Hello Alfa,

The next link may be of help (nuclear fusion):

http://www.convectron.eu/en/home.html

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Recently Browsing   0 members

    No registered users viewing this page.