Tuesday, July 23, 2024
Contact    |    RSS icon Twitter icon Facebook icon  
Unexplained Mysteries
You are viewing: Home > News > Science & Technology > News story
Welcome Guest ( Login or Register )  
All ▾
Search Submit

Science & Technology

Has 5G achieved what Nikola Tesla could not ?

April 10, 2021 · Comment icon 3 comments

Tesla dreamed of a way to transmit electricity wirelessly. Image Credit: Warwick Goble
The 5G network has the potential to realize the dream that Tesla obsessed over more than a century ago.
Elena Gaura and James Peter Brusey of Coventry University take a look at how today's mobile communications technology could be the very thing Tesla once struggled to achieve.

At the height of his career, the pioneering electrical engineer Nikola Tesla became obsessed with an idea. He theorised that electricity could be transmitted wirelessly through the air at long distances - either via a series of strategically positioned towers, or hopping across a system of suspended balloons.

Things didn't go to plan, and Tesla's ambitions for a wireless global electricity supply were never realised. But the theory itself wasn't disproved: it would have simply required an extraordinary amount of power, much of which would have been wasted.

Now, a research paper has suggested that the architects of the 5G network may have unwittingly built what Tesla failed to construct at the turn of the twentieth century: a "wireless power grid" that could be adapted to charge or power small devices embedded in cars, homes, workplaces and factories.

Because 5G relies upon a dense network of masts and a powerful series of antenna, it's possible that the same infrastructure, with some tweaks, could beam power to small devices. But the transmission will still suffer from the key drawback of Tesla's towers: high energy wastage, which may be difficult to justify given the urgency of the climate crisis.

5G networks

Decades ago, it was discovered that a tightly focused radio beam can transmit power over relatively large distances without using a wire to carry the charge. The same technology is now used in the 5G network: the latest generation of technology to beam internet connection to your phone, via radio waves transmitted from a local antenna.

This 5G technology aims to provide a 1,000-fold capacity increase over the last generation, 4G, to allow up to one million users to connect per square kilometre - making those moments searching for signal at music festivals or sports events a thing of the past.

To support these upgrades, 5G uses some engineering magic, and this magic comes in three parts: very dense networks with many more masts, special antenna technology, and the inclusion of millimetre wave (mmWave) transmission alongside more traditional bands.

The last of these, mmWave, opens up much more bandwidth at the cost of shorter transmission distances. For context, most WiFi routers operate in the 2GHz band. If your router has a 5GHz option, you'll have noticed that movies stream more smoothly - but you have to be closer to your router for it to work.

Increase the frequency further (like mmWave, which operates at 30GHz or more) and you see even greater improvements in bandwidth - but you need to be closer to the base station to access it. This is why 5G masts are more densely clustered than 4G masts.

The last bit of magic is to add many more antennas - between 128 and 1,024 compared to a much smaller number (just two in some cases) for 4G. Multiple antennas allow masts to form hundreds of pencil-like beams that target particular devices, providing efficient and reliable internet to your phone on the move.

These happen to be the same raw ingredients needed to create a wireless power grid. The increased network density is particularly important, because it opens up the possibility of using mmWave bands to transmit different radio waves which can carry both internet connection and electrical power.

Experimenting with 5G power

The experiments used new types of antenna to facilitate wireless charging. In the laboratory, the researchers were able to beam 5G power over a relatively short distance of just over 2 metres, but they expect that a future version of their device will be able to transmit 6 microwatts (6 millionths of a watt) at a distance of 180 metres.

To put that into context, common Internet of Things (IoT) devices consume around 5 microwatts - but only when in their deepest sleep mode. Of course, IoT devices will require less and less power to run as clever algorithms and more efficient electronics are developed, but 6 microwatts is still a very small amount of power.

That means, for the time being at least, that 5G wireless power is unlikely to be practical for charging your mobile phone as you go about your day. But it could charge or power IoT devices, like sensors and alarms, which are expected to become widespread in the future.

In factories, for instance, hundreds of IoT sensors are likely to be used to monitor conditions in warehouses, to predict failures in machinery, or to track the movement of parts along a production line. Being able to beam power directly to these IoT devices will encourage the move to far more efficient manufacturing practices.

Teething problems

But there will be challenges to overcome before then. To provide wireless power, 5G masts will consume around 31kW of energy - equivalent to 10 kettles constantly boiling water.

Though concerns that 5G technology can cause cancer have been widely debunked by scientists, this amount of power emanating from masts could be unsafe. A rough calculation suggests that users will need to be kept at least 16 metres away from masts to comply with safety regulations set by the US Federal Communications Commission.

That said, this technology is in its infancy. It's certainly possible that future approaches, such as new antenna with narrower and more targeted beams, could significantly reduce the energy required - and wasted - by each mast.

At present, the proposed system is rather reminiscent of the fictional "Wonkavision" in Roald Dahl's Charlie and the Chocolate Factory, which achieved the feat of beaming confectionary into TVs - but had to use a huge block of chocolate to produce a much smaller one at the other end.

Because it'll consume a high amount of power compared to the power it'll deliver to devices, 5G wireless power is, for the moment, speculative. But if engineers can find more efficient ways to beam electricity through the air, it may well be that Nikola Tesla's dream of wireless power could be realised - over 100 years since his attempts failed.

Elena Gaura, Associate Dean for Research, Coventry University and James Peter Brusey, Professor of Computer Science, Coventry University

This article is republished from The Conversation under a Creative Commons license.

Read the original article.

Source: The Conversation | Comments (3)

Other news and articles
Recent comments on this story
Comment icon #1 Posted by third_eye 3 years ago
Next GO!  6G... Hang on to your gigabytes... ~
Comment icon #2 Posted by Manwon Lender 3 years ago
In reality it doesn't apply to Tesla's true goal at all. The purpose of his experiments were to transmit electricity without the use of wires. Tesla wanted to provide free wireless electricity to all the worlds people, and on a limited basis he proved this was possible. So in reality 5G has little to do with Tesla's objective, however, the basis of the technology used to do does have its roots in applications and patents that Tesla did first develop. Jump to the year 2021, New Zealand is implementing this process. So maybe Tesla wasn't as crazy as people thought he was during his time. In my o... [More]
Comment icon #3 Posted by Trihalo42 3 years ago
It's my understanding that he was working towards using the Shumann Resonance as a kind of carrier. It is possible to transmit Very Low Frequency waves using grounding spikes, since dry earth with low conductivity has a capacitive effect, instead of using the miles long systems currently in place to use VLF to communicate with submarines. And it's possible that his demonstration with the car "powered by the ether" was itself tapping into the Shumann Resonance. Skeptics claim he simply had another tower type transmitter nearby, though that would still be more impressive than simply charging yo... [More]

Please Login or Register to post a comment.

Our new book is out now!
Book cover

The Unexplained Mysteries
Book of Weird News


Take a walk on the weird side with this compilation of some of the weirdest stories ever to grace the pages of a newspaper.

Click here to learn more

We need your help!
Patreon logo

Support us on Patreon


For less than the cost of a cup of coffee, you can gain access to a wide range of exclusive perks including our popular 'Lost Ghost Stories' series.

Click here to learn more

Top 10 trending mysteries
Recent news and articles